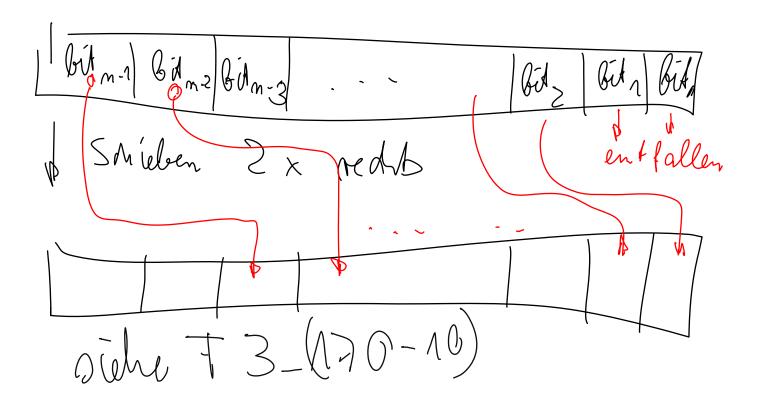
weiter vom 20. 6. 12


Bitmanipulation und Schieben

Einzelne bit im n-bit-Datenwort auf 0 oder 1 verändern (Bitrücksetzen, Bitsetzen)

Schieben und rotieren

Veränderung von bit-Positionen im Datenwort

z.B. Schieben zweimal rechts:

arithmetische Interpretation (Mult. /Div. mit Zweierpotenzen)

logische Interpretation: Vor- oder Nachbereiten von logischen Operationen (bit-Positionen so verändern, wie für die log. Op. notwendig)

Unterschied Rotieren zu Schieben (Bsp. 3_170): entfallende bit-Positionen werden auf der anderen Seite wieder eingeschoben, keine arithmetische Interpretation möglich

Bisher Erzeugen nächste Befehlsadresse (ENBA) durch BA:=BA+1

damit sind rein lineare sequentielle Befehlsfolgen möglich

für normale Algorithmen sind Abweichungen von dieser linearen sequentiellen Folge notwendig:

- **→** ENBA nicht durch +1
- → Sprünge, Unterprogrammbefehle, Interruptmechanismus

Sprünge:

- 1. Möglichkeit: Weiterarbeit mit BA:=BA+1
- 2. Möglichkeit: Weiterarbeit mit BA:= vorgegebener Adresse

unbedingt: immer 2. Möglichkeit

bedingt: 1. Möglichkeit bei nicht erfüllter Bedingung

2. Möglichkeit bei erfüllter Bedingung

Möglichkeiten für vorgegebene Adresse:

- 1. fester Wert (evtl. Basisadressiert) (absolut)
- 2. Wert:= aktueller Wert + Distanz (relativ)
- 3. Wert:= Inhalt eines Registers (eventuell speziell berechnet) (indirekt)

Kombinationen möglich:

z.B. bedingt, relativ

Bedingungen sind typ. PSR-bits

Unterprogramm: mehrfach nutzbares Teilprogramm, wobei die Rückkehr nach Ende dieses Teilprogramms auf den Befehl erfolgt, der nach dem aufrufenden Befehl im Speicher steht. (F3_180 rechts)

→ Speicherung der "Rückkehradresse" -> im Stack

Ablauf UP-Aufruf

- 1. BL CALL (UP-Ruf-Befehl)
- 2. OL mit BA:=BA+1 (fester Wert, absolut, steht im Befehlscode nach dem CALL)
- 3.BA := BA + 1

- 4. Stackschreiben Inhalt von BA (Rückkehradresse) mit der SP-Manipulation nach LIFO-Prinzip)
- 5. ENBA mit gelesenem festen absolutem Wert

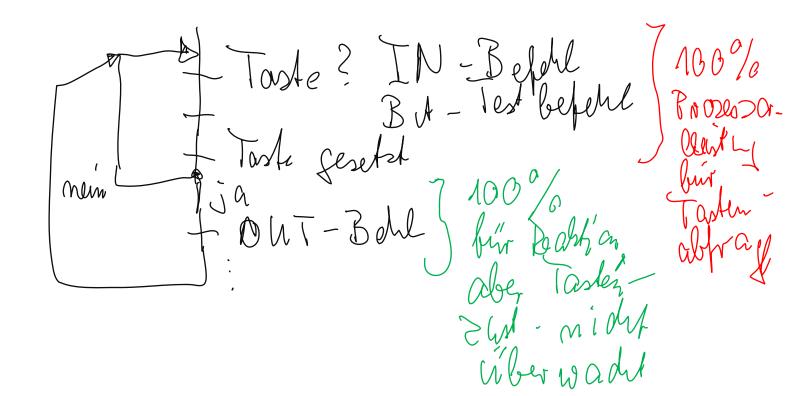
Ablauf UP-Rückkehr

- 1. BL RET (Return, UP-Rückkehrbefehl)
- 2. Stacklesen in ENBA mit SP-Manipulation nach LIFO-Prinzip

können wie die Sprünge in Zusammenhang mit Bedingungungen und Varianten zur Adresswertvorgabe auftreten.

Verschachtelter Aufruf von UP möglich:

d.h im UP wieder ein UP aufrufen (aufgrund des LIFO-Stackprinzips (F3_190)


Interrupt (Programmunterbrechung):

programmtechnische Reaktion auf ein zeitlich nicht vorhersehbares ext. Ereignis.

Bsp.:

Taste -> Betätigung -> Ausgabe (Realton and Task

Mit bedingten Sprüngen:

Effektiver mit Interrupt (F3_200):

Prozessor arbeitet solange in einem Hauptprogramm, bis die Taste betätigt wird (z.B. längere Berechnung)

dabei wird die Taste nicht ständig abgefragt!

Tastenbetätigung führt zu:

Stopp Hauptprogramm nach aktuellem Befehl -> Abbarbeitung eines der Taste zugeordneten Interruptprogramms

Am Ende des Interruptprogramms Rückkehr in das Hauptprogramm an die Stelle nach dem dort aktuell ausgeführten letzten Befehls

Ablauf dazu: F3_207
Interruptcontroller: Zusatzhartware zur (erweiterten) Prozessorgrundstruktur
Eingänge für auf binare Signale abgebildete Ereignisse (z.B. Taste)
Ereignis: 1) Mitteilung an Prozessor: es existiert ein Ereignis (noch nicht, welches) 2,3
nach Bef. k vom Hauptprogramm – Prozessor fordert vom IC an, welches Ereignis (welcher Interrupt) 4
IC liefert Int-Nr. der Taste (Int. i)
Prozessor liest aus einer Tabelle im Speicher (die enthält die Startadressen aller den Interrupteingängen zugeordneten Ereignisreaktionsprogramme) die Startadresse für Reaktion auf die Taste
Rückkehradresse (Adr. von Bef. k+1 des Hauptprogramms) in den Stack (zusätzlich aktuelle PSR-Belegung im Hauptprogramm)
Sprung auf die Startadresse ()
Abarbeiten des Reaktionsprogramms (9)
Rückkehradresse (zusätzlich die PSR-Belegung) aus dem Stäck und Sprung auf die Rückkehradresse

Warum PSR-Belegung bei Innterrupt in den Stack?

- → F3_210
- → im Hauptprogram ist akt. Befehl (Bef.k) ein Befehl, des das PSR setzt
- → danach Interruptprogramm -> verändert PSR
- → ohne PSR-Speicherung würde der Bef. k+1 im Hautprogamm, der hier das PSR auswertet mit einem ungültigen PSR-Wert arbeiten

weiter mit Kap. 4. Speicher